

Python ANP/AHP Library

Contents:

	Programmers Reference PyANP
	AHPTree class

	Group pairwise comparison

	Priority calculations module

	Limit matrix calculations

	Example matrices module

	General functions module

	Direct data class

	Prioritizer class

	ANP Row Sensitivity

	Rating class

	ANP structure module

Indices and tables

	Index

	Module Index

	Search Page

Programmers Reference PyANP

Contents:

	AHPTree class

	Group pairwise comparison

	Priority calculations module

	Limit matrix calculations

	Example matrices module

	General functions module

	Direct data class

	Prioritizer class

	ANP Row Sensitivity

	Rating class

	ANP structure module

AHPTree class

	
class pyanp.ahptree.AHPTree(root_name='Goal', alt_names=None)

	Represents all of the data of an ahp tree.

	
__init__(root_name='Goal', alt_names=None)

	Creates a new AHPTree object

	Parameters

	
	root_name – The name of the root node of the tree, defaults to Goal.

	alt_names – The alts to start this tree with.

	
add_alt(alt_name: str) → None

	Adds an alternative to this tree and all of the nodes in the tree.

	Parameters

	alt_name – The name of the new alternative to add.

	Returns

	Nothing

	Raises

	ValueError – If an alternative already existed with the given name

	
add_child(childname: str, undername: str = None) → None

	Adds a child node of a given name under a node.

	Parameters

	
	childname – The name of the child to add.

	undername – The name of the node to add the child under

	Returns

	Nothing

	Raises

	ValueError – If undername was not a node, or if childname already existed as a node.

	
add_user(user: str) → None

	Adds the user to this AHPTree object.
:param user: The name of the user to add
:return:
Nothing
:raises ValueError:
If the user already existed.

	
alt_direct(wrt: str, alt_name: str, val: float) → None

	Directly sets the alternative score under wrt node. See AHPTreeNode.alt_direct for more information
as that is the function that does the hard work.
:param wrt: The name of the wrt node.
:param alt_name: The name of the alternative to direclty set.
:param val: The new directly set value.
:return:
Nothing
:raises ValueError:
* If there is no alternative by that name
* If the wrt node did not exist

	
alt_incon_std(username, wrt: str = None) → float

	Calcualtes the standard inconsistency score for the pairwise comparison of the alts
for the given user

	Parameters

	
	username – The string name/names of users to do the inconsistency for. If more than one user
we average their pairwise comparison matrices and then calculate the incosnsitency of the result.

	wrt – The name of the node to get the inconsistency around. If None, we use the root node.

	Returns

	The standard Saaty inconsistency score.

	
alt_pwmatrix(username, wrt: str) → numpy.ndarray

	Gets the alternative pairwise comparison matrix for the alts under wrt, assuming the wrt node has
the alternatives under it and they are pairwise compared.

	Parameters

	
	username – The name/names of the users to get the pairwise comparison of.

	wrt – The name of the wrt node, or the AHPTreeNode object.

	Returns

	A numpy array of the pairwise comparison information. If more than one user specified in usernames param
we take the average of the group.

	
altpw(username: str, wrt: str, row: str, col: str, val, createUnknownUser=True) → None

	Pairwise compares a alts for a given user.

	Parameters

	username – The name of the user to do the comparison for. If the user doesn’t exist, this will create

the user if createUnknownUser is True, otherwise it will raise an exception

	Parameters

	
	wrt – The name of the wrt node.

	row – The name of the row alt for the comparison, i.e. the dominant node.

	col – The name of the column alt for the comparison, i.e. the recessive node.

	val – The vote value

	Returns

	Nothing

	Raises

	ValueError – If wrt, row, or col node did not exist. Also if username did not exist and

createUnknownUsers is False.

	
get_node(nodename: str) → pyanp.ahptree.AHPTreeNode

	
	Parameters

	nodename – The string name of the node to get. If None, we return the root node.

If nodename is actually an AHPTreeObject, we simply return that object.

	Returns

	The AHPTreeNode object corresponding to the node with the given name

	Raises

	KeyError – If no such node existed

	
get_nodes_hash() → dict

	
	Returns

	

A dictionary of nodeName:nodeObject for all nodes in this tree.

	
global_priority(username=None, rvalSeries=None, undername: str = None, parentMultiplier=1.0) → pandas.core.series.Series

	Calculates and returns the global priorities of the nodes.

	Parameters

	
	username – The name/names of the users to calculate for. None means the group average.

	rvalSeries – If not None, add the results to that series

	undername – If None, use the root node, otherwise a string for the name of the node to go under. Internally
we also allow for AHPTreeNode’s to be passed in this way.

	parentMultiplier – The value to multiply the child priorities by.

	Returns

	The global priorities as a Series whose index is the node names, and values are the global priorities.

	
global_priority_table() → pandas.core.frame.DataFrame

	Calculates the global priorities for every user, and the group

	Returns

	A dataframe whose columns are “Group” for the total group average, and then each user name. The
rows are the node names, and values are the global priority for the given node and user.

	
incon_std(username, wrt: str = None) → float

	Calcualtes the standard inconsistency score for the pairwise comparison of the children nodes
for the given user

	Parameters

	
	username – The string name/names of users to do the inconsistency for. If more than one user
we average their pairwise comparison matrices and then calculate the incosnsitency of the result.

	wrt – The name of the node to get the inconsistency around. If None, we use the root node.

	Returns

	The standard Saaty inconsistency score.

	
incon_std_series(username: str) → pandas.core.series.Series

	Calculates the inconsistency for all wrt nodes for a user / user group. See AHPTree.incon_std()
for details about the actual calculation.

	Parameters

	username – The name/names of the user to calculate the inconsistency for.

	Returns

	A pandas.Series whose index is wrt node names, and whose values are the inconsistency of the given user(s)
on that comparison.

	
incond_std_table() → pandas.core.frame.DataFrame

	Calculates the inconsistency for all users and wrt nodes in this tree.

	Returns

	A pandas.DataFrame whose columns are users (first column is called “Group” and is for the group average) and
whose rows are wrt nodes. The values are the inconsistencies for the given user on the give wrt node’s
pairwise comparison.

	
isalt(name: str) → bool

	Tells if the given alternative name is an alternative in this tree.
:param name: The name of the alternative to check.
:return:
True if the alternative is in the list of alts for this tree, false otherwise.

	
nalts()

	
	Returns

	

The number of alternatives in this tree.

	
node_pwmatrix(username, wrt: str) → numpy.ndarray

	Gets the pairwise comparison matrix for the nodes under wrt.

	Parameters

	
	username – The name/names of the users to get the pairwise comparison of.

	wrt – The name of the wrt node, or the AHPTreeNode object.

	Returns

	A numpy array of the pairwise comparison information. If more than one user specified in usernames param
we take the average of the group.

	
nodenames(undername: str = None, rval=None) → list

	Name of all nodes under the given node, including that node.

	Parameters

	undername – The name of the node to get all nodes under, but only if underNode is not set.

It can also be an AHPTreeNode, but that is really for internal use only

	Parameters

	rval – If not

	Returns

	The node names as a list

	
nodepw(username: str, wrt: str, row: str, col: str, val, createUnknownUser=True) → None

	Pairwise compares a nodes for a given user.

	Parameters

	username – The name of the user to do the comparison for. If the user doesn’t exist, this will create

the user if createUnknownUser is True, otherwise it will raise an exception

	Parameters

	
	wrt – The name of the wrt node.

	row – The name of the row node for the comparison, i.e. the dominant node.

	col – The name of the column node for the comparison, i.e. the recessive node.

	val – The vote value

	Returns

	Nothing

	Raises

	ValueError – If wrt, row, or col node did not exist. Also if username did not exist and

createUnknownUsers is False.

	
nodes(undername: str = None, rval=None)

	Returns the AHPTreeNode objects under the given node, including that node

	Parameters

	
	undername – The string name of the node to get the nodes under. It can also be an AHPTreeNode object
as well. If None it means the root node.

	rval – If not None, it should be a list to add the AHPTreeNode’s to.

	Returns

	The list of AHPTreeNode objects under the given node.

	
priority(username=None, ptype: pyanp.prioritizer.PriorityType = None) → pandas.core.series.Series

	Calculates the scores of the alternatives. Calls AHPTree.synthesize() first to calculate.
:param username: The name (or list of names) of the user (users) to synthensize. If username is None,
we calculate for the group.
:param ptype: Do we want to rescale the priorities to add to 1 (normalize), or so that the largest value
is a 1 (idealize), or just leave them unscaled (Raw).
:return:
The alternative scores, which is a pd.Series whose index is alternative names, and values are the scores.

	
priority_table() → pandas.core.frame.DataFrame

	
	Returns

	A dataframe whose columns are “Group” for the total group average, and then each user name.

The rows are the alternative names, and the values are the alternative scores for each user.

	
synthesize(username=None) → None

	Does ahp tree synthesis to calculate the alternative scores wrt to all nodes in the tree.

	Parameters

	username – The name/names of the user/users to synthesize wrt. If None, that means do the full group average.

	Returns

	

Nothing

	
usernames() → list

	
	Returns

	

The names of the users in this tree.

Group pairwise comparison

Group pairwise object and calculations. See pyanp.priority for
all methods of calculating priorities from a pairwise comparison matrix
in addition to inconsistency calculations.

	
class pyanp.pairwise.Pairwise(alts=None, users=None, demographic_cols=None)

	Creates a new group pairwise comparison object.

	Parameters

	
	alts – The list alternatives (things you are comparing) to start with.
Should be a list-like object of strings.

	users – The users to start the group pairwise comparison object
with. It should be a list-like object of strings.

	demographic_cols – The names of the demographic columns to start
the group pairwise comparison object with. It should be a list-like
object of strings.

	
add_alt(alt_name: str, ignore_existing=False) → None

	Adds an alternative (thing you are pairwise comparing) to this group
pairwise comparison object.

	Parameters

	alt_name – The name of the alternative to add.

	Returns

	Nothing

	Raises

	ValueError – If the alternative already esisted.

	
add_user(user_name: str) → None

	Adds a user to this group pairwise comparison object.

	Parameters

	user_name – The name of the user to add

	Returns

	Nothing

	Raises

	ValueError – If the user already existed.

	
alt_index(alt_name_or_index) → int

	Find the index (integer location) of the given alternative in the
pairwise comparison matrices.

	Parameters

	alt_name_or_index – If this is an integer, we simply return that
integer. Otherwise we look up the index of the alternative name in
the list of alternatives in this object.

	Returns

	The index that alternative has in the pairwise comparison
matrices.

	
alt_names()

	
	Returns

	List of string alt names

	
data_names(append_to=None, post_pend='')

	

	
incon_std(user_name=None) → float

	Calculates the standard Saaty pairwise comparison inconsistency for
a user or group of users.

	Parameters

	user_name – The name/names of the users to get the inconsistency
of. If None, we get the inconsistency of the group average matrix. If
it is a string, we get the inconsistency of that user. If it is a list
of users, we get the inconsistency of the group average for that list of
users.

	Returns

	The Saaty inconsistency score.

	
is_alt(alt_name: str) → bool

	Checks if an alternative (a thing you are pairwise comparing) exists in
this group pairwise comparison object.

	Parameters

	alt_name – The name of the alternative to check for.

	Returns

	True/False

	
is_user(user_name: str) → bool

	Checks if a user exists in this group pairwise comparison object.

	Parameters

	user_name – The name of the user to look for

	Returns

	True/False

	
matrix(user_name=None, createUnknownUser: bool = True, as_df=False) → numpy.ndarray

	Gets the pairwise comparison for a user or group of users.

	Parameters

	
	user_name – The name/names of the user/users to get the
comparisons of. If None, that means to get the group average for
all users. If it is a string, that means get the pairwise comparison
matrix of that user. If it is a list-like of strings, we get the
group average matrix for all of those users.

	createUnknownUser – If True and the user_name did not exist, we
should create that user. Otherwise throw an error if we request
for a non-existant user.

	as_df – If True return as pandas.DataFrame with index/column names
as the alt names, otherwise return numpy.ndarray

	Returns

	The numpy array of the pairwise comparisons, or DataFrame if
as_df is True

	Raises

	ValueError – If createUnknownUser=False and we request for a single
non-existant user.

	
nalts() → int

	
	Returns

	The number of alternatives (things you are pairwise comparing)
in this group pairwise comparison object.

	
priority(username=None, ptype: pyanp.prioritizer.PriorityType = None)

	Calculates the resulting priority for the given user / users.

	Parameters

	
	user_name – The name/names of the users to calculate the priority
of. If None, we get the priority of the group average matrix. If
it is a string, we get the priority of that user. If it is a list
of users, we get the priority of the group average for that list of
users.

	ptype – How should we normalize the resulting priorities
(if at all).

	Returns

	A pandas.Series whose indices are the alternative names and
whose values are the priorities of those alternatives.

	
unvote(user_name: str, row, col, createUnknownUser: bool = True) → None

	Unsets a pairwise comparison

	Parameters

	
	user_name – The string name of the user whose pairwise comparison
vote you wish to unset.

	row – The integer or string name of the row to compare at.

	col – The integer or string name of the column to compare at.

	createUnknownUser – If True and user_name does not exist in this
object, we will create it first, then do the unset operation.
Otherwise it throws an exception for unknown users.

	Returns

	Nothing

	Raises

	ValueError – If the user does not exist and createUnknownUsers is False.

	
usernames()

	
	Returns

	A list of the users in this group pairwise comparison object.

	
vote(user_name: str, row, col, val: float = 0, createUnknownUser: bool = True) → None

	Changes a single pairwise value for a single user.

	Parameters

	
	user_name – The string name of the user whose pairwise comparison
vote you wish to change.

	row – The integer or string name of the row to compare at.

	col – The integer or string name of the column to compare at.

	val – The new pairwise comparison value

	createUnknownUser – If True and user_name does not exist in this
object, we will create it first, then do the comparison. Otherwise
it throws an exception for unknown users.

	Returns

	Nothing

	Raises

	ValueError – If the user does not exist and createUnknownUsers is False.

	
vote_matrix(user_name: str, val=<class 'numpy.ndarray'>, createUnknownUser: bool = True)

	Sets the vote matrix for a user

	Parameters

	
	user_name –

	val –

	Returns

	

	
vote_series(votes: pandas.core.series.Series, row, col, createUnknownUser: bool = True) → None

	Changes a single pairwise value for a series of users.

	Parameters

	
	votes – Series whose index is usernames and values are their votes.

	row – The integer or string name of the row to compare at.

	col – The integer or string name of the column to compare at.

	createUnknownUser – If True and a username does not exist in this
object, we will create it first, then do the comparison. Otherwise
it throws an exception for unknown users.

	Returns

	Nothing

	Raises

	ValueError – If the user does not exist and createUnknownUsers is False.

	
pyanp.pairwise.add_place(mat)

	Adds a row and column to the end of a matrix, and makes the last entry 1, rest of the
added entries are zeroes

	Parameters

	mat – The matrix to add an entry to.

	Returns

	New matrix

	
pyanp.pairwise.geom_avg_mats(mats) → numpy.ndarray

	Calculates the geometric average of the given matrices.

	Parameters

	mats – A list-like object of numpy arrays

	Returns

	A numpy array that is the geometric average

Priority calculations module

All pairwise matrix to priority vector calculations

@author: Dr. Bill Adams

	
pyanp.priority.geom_avg(vals) → float

	Compute the geometric average of a list of values.

	Parameters

	vals – A list-like of numbers

	Returns

	The geometric average of the values.

	
pyanp.priority.geom_avg_mat(mat, coeffs=None) → numpy.ndarray

	Computes the geometric average of the columns of a matrix.

	Parameters

	
	mat – Must be an numpy.array of shape [nRows, nCols]

	coeffs – If not None, it is a list like object with nColsOfMat elements.
We multiply column 0 of mat by coeffs[0], column 1 of mat by coeffs[1], etc
and then do the geometric average of the columns. Essentially this weights the
columns.

	Returns

	An np.array of dimension [nRowsOfMat], i.e. a vector. that is the
weighted geometric average of the columns of the matrix mat.

	
pyanp.priority.harker_fix(mat: numpy.ndarray) → numpy.ndarray

	Performs Harker’s fix on the numpy matrix mat. It returns a copy with the fix.
The function does not change the matrix mat.

	Parameters

	mat – A square numpy.

	Returns

	A copy of mat with Harker’s fix applied to it

	
pyanp.priority.incon_gci(mat: numpy.ndarray, use_harker: bool = True, only_count_nonzero=True) → float

	Calculates the inconsistency of a pairwise matrix using the GCI formula from

	Parameters

	
	mat – A numpy.array of shape [size,size] of pairwise comparisons.

	use_harker – Should we apply Harker’s fix before the calculation?

	only_count_nonzero – Should we only average nonzero comparisons (this is not the official defn of gci)

	Returns

	The inconsistency.

	
pyanp.priority.incon_std(mat: numpy.ndarray, error: float = 1e-10, use_harker: bool = True) → float

	Calculates the inconsistency of a pairwise matrix using the standard
Saaty AHP/ANP theoretic formula.

	Parameters

	
	mat – A numpy.array of shape [size,size] of pairwise comparisons.

	error – The error to use for the pri_eigen calculation

	use_harker – Should we apply Harker’s fix before the calculation?

	Returns

	The inconsistency.

	
pyanp.priority.inconsistency_divisor(mat_or_size) → float

	Calculates the inconsistency divisor for a matrix, or the size of a matrix.
The inconsistency divisor is what you divide (eigenvalue - size) by to get the inconsistency.

	Parameters

	mat_or_size – Either a pairwise matrix, or simply the size of the pairwise
matrix (which is what determines the inconsistency divisor).

	Returns

	The inconsistency divisor

	
pyanp.priority.mat_gci(mat1: numpy.ndarray, mat2: numpy.ndarray, only_count_nonzero=True) → float

	Calculates the GCI of two matrices
:param mat1:
:param mat2:
:return:

	
pyanp.priority.prerr_euclidratio(pwmat, privec)

	Calculates the euclidean distance error between the pairwise matrix and the
ratio matrix of a priority vector.

This calculates using the following formula

\[\sqrt{ \sum_{i,j} \left(\frac{pwmat[i, j] - privec[i]}{privec[j]} \right)^2}\]

	Parameters

	
	pwmat – A numpy.array of shape [size, size] of pairwise comparisons.

	privec – A numpy.array of share [size] of the priority vector to compare
this pairwise matrix to.

	Returns

	The error/distance between the ratio matrix and the matrix.

	
pyanp.priority.prerr_ratio_avg(pwmat, privec)

	Calculates priority error using the arithmetic average of ratio distance of
pwmat from the ratio matrix of privec

It averages:

\[ratio_greater_1(pwmat[i, j], (privec[i]/privec[j])) - 1\]

where

\[\begin{split}ratio_greater_1(a,b) = \begin{cases}
 1 & \hbox{ if a or b = 0 } \\
 max(a/b, b/a) & \hbox{otherwise}
\end{cases}.\end{split}\]

	Parameters

	
	pwmat – A numpy.array of shape [size, size] of pairwise comparisons

	privec – A numpy.array of shape [size] of priortiy vector

	Returns

	The ratio average priority vector

	
pyanp.priority.prerr_ratio_prod(pwmat, privec)

	Calculates priority error using the geometric average of ratios of pwmat
and the ratio matrix of privec, the formula is:

\[\sqrt[n(n-1)/2]{\prod_{i=1, j=i+1} ratio_greater_1(pwmat[i, j], privec[i]/privec[j])}\]

	Parameters

	
	pwmat – A numpy.array of shape [size, size] of pairwise comparisons

	privec – A numpy.array of shape [size] of priortiy vector

	Returns

	The calculated error

	
pyanp.priority.pri_eigen(mat: numpy.ndarray, error: float = 1e-10, use_harker: bool = False, return_eigenval: bool = False)

	Calculates the largest eigen vector of a matrix.

	Parameters

	
	mat – A square numpy array.

	use_harker=False – Should we apply Harker’s fix before computing?

	return_eigenval=False – If True it returns only the eigenvalue, otherwise only returns the eigenvector.

	Return numpy.array

	The largest eigenvector that is the normalized (sum to 1) largest eigenvector as a numpy.array
of shape [size] if return_eigenval=False, otherwise returns the eigenvalue as a number.

	
pyanp.priority.pri_expeigen(mat, error=1e-10)

	Calculates priorities using exponential (aka multiplicative) eigenvector

	Parameters

	
	mat – An numpy.array of shape [size, size] of pairwise comparisions.

	error=1e-10 – The convergence error term

	Return numpy.array

	The resulting exponential eigenvector as a numpy.array
of shape [size]

	
pyanp.priority.pri_geomavg(mat)

	
	Calculates the priorities using the geometric mean method, aka Log Least

	Squares Method (LLSM).

	Parameters

	mat – An numpy.array of dimension [size,size]

	Return numpy.array

	The resulting llsm priority vector as a numpy.array of
shape [size]

	
pyanp.priority.pri_llsm(mat)

	
	Calculates the priorities using the geometric mean method, aka Log Least

	Squares Method (LLSM).

	Parameters

	mat – An numpy.array of dimension [size,size]

	Return numpy.array

	The resulting llsm priority vector as a numpy.array of
shape [size]

	
pyanp.priority.ratio_greater_1(a, b)

	The ratio of a to b (or b to a) that is larger than or equal to 1.

	Parameters

	
	a – A numerical value for the ratio calculation

	b – Another numerical value

	Returns

	1 if a or b is 0, otherwise max(a/b, b/a)

	
pyanp.priority.ratio_mat(pv) → numpy.ndarray

	Returns the ratio matrix of a vector

	Parameters

	pv – An array-like object with len(pv)=size

	Returns

	A numpy.array of shape [size, size] of the ratios

	
pyanp.priority.size_array_like(mat_or_size)

	Returns the size of an array like or integer

	Parameters

	mat_or_size – Either an integer (specifying the size) or an array-like or numpy.array of shape [size, size].
If array-like list of lists, we only use len(mat_or_size), we do not check that the array-like is actually
square.

	Returns

	The parameter if it was an integer, len(mat_or_size) if param is a list, or mat_or_size.shape[0] if
mat_or_size is a numpy.ndarray

	
pyanp.priority.utmrowlist_to_npmatrix(list_of_votes) → numpy.ndarray

	Convert a list of values to a pairwise matrix, assuming the list is the upper triangular part only

	Parameters

	list_of_votes – An array like, the first elements are the top row of the UTM part of the matrix.
Then it goes to the second row, etc.

	Returns

	A numpy.array of the full pairwise comparison matrix.

Limit matrix calculations

All ANP limit matrix functions live here.

Contains all limit matrix calculations

	
pyanp.limitmatrix._mat_pow2(mat, power, rescale=False)

	Calculates \(mat^N\) where \(N \geq power\) and N is a power of 2.
It does this by squaring mat, and squaring that, etc, until it reaches
the desired level. It takes at most floor(log_2(power))+1 matrix
multiplications to do this, which is much preferred for large powers.

	Parameters

	
	mat – The numpy array to raise to a power.

	power – The power to be greater than or equal to

	rescale – If True, after each mult we divide the matrix by its max

	Returns

	The resulting power of the matrix

	
pyanp.limitmatrix.calculus(mat, error=1e-10, max_iters=5000, use_hierarchy_formula=True, col_scale_type=None, start_pow=None)

	Calculates the ‘Calculus Type’ limit matrix from superdecisions

	Parameters

	
	mat – The scaled supermatrix to calculate the limit matrix of

	error – The maximum error to allow between iterations

	max_iters – The maximum number of iterations before we give up, after we calculate the start power

	use_hierarchy_formula – If True and the matrix is for a hierarchy we use that formula instead.

	col_scale_type – A string if ‘all’ it scales mat1 by max(mat1) and similarly for mat2
otherwise, it scales by column

	start_pow – If None, we calculate the starting power to look for convergence, otherwise this
should be an integer > 0

	Returns

	The calculats limit matrix as a numpy array.

	
pyanp.limitmatrix.hiearhcy_formula(mat)

	Uses the hierarchy formula to calculate the limit matrix. This is essentially the normalization of
the sum of higher powers of mat.

	Parameters

	mat – A square nump.array that you wish to find the limit matrix of, using the hiearchy formula.

	Returns

	The limit matrix, unless the matrix was not a hiearchy. If the matrix was not a
hierarchy we return None

	
pyanp.limitmatrix.hierarchy_nodes(mat)

	Returns the indices of the nodes that are hierarchy ones. The others are not hierachy

	Parameters

	mat – A supermatrix (scaled or non-scaled, both work).

	Returns

	List of indices that are the nodes which are hierarhical.

	
pyanp.limitmatrix.limit_newhierarchy(mat, with_limit=False, error=1e-10, col_scale_type=None, max_count=1000)

	Performs the new hiearchy limit matrix calculation

	Parameters

	
	mat – The matrix to perform the calculation on.

	with_limit – Do we include the final limit step?

	Returns

	The resulting numpy array

	
pyanp.limitmatrix.limit_sinks(mat, straight_normalizer=True)

	Performs the limit with sinks calculation. We break up the matrix
into sinks and nonsinks, and use those pieces.

	Parameters

	
	mat – The matrix to do the limit sinks calculation on.

	straight_normalizer – If False we normalize at each step, if True
we normalize at the end.

	Returns

	The resulting numpy array result.

	
pyanp.limitmatrix.normalize(mat, inplace=False)

	Makes the columns of a matrix add to 1 (unless the column summed to zero, in which case it is left unchanged)
Does this by dividing each column by the sum of that column.

	Parameters

	
	mat – The matrix to normalize

	inplace – If true normalizes the matrix sent in, otherwise it leaves that matrix alone, and returns a
normalized copy

	Returns

	If inplace=False, it returns the normalized matrix, leaving the param mat unchanged. Otherwise it
returns nothing and normalizes the param mat.

	
pyanp.limitmatrix.normalize_cols_dist(mat1, mat2, tmp1=None, tmp2=None, tmp3=None, col_scale_type=None)

	Calculates the distance between matrices mat1 and mat2 after they have
been column normalized. tmp1, tmp2, tmp3
are temporary matrices to store the normalized versions of things. This
code could be called many times in a limit matrix calculation, and allocating
and freeing those temporary storage bits could take a lot of cycles. This
way you allocate them once at the top level loop of the limit matrix calculation
and they are reused again and again.

If you do not wish to avail yourself of this savings, simply leave them as None’s
and the algorithm will allocate as appropriate

	Parameters

	
	mat1 – First matrix to compare

	mat2 – The other matrix to compare

	tmp1 – A temporary storage matrix of same size as mat1 and mat2. If None, it will be allocated inside the fx.

	tmp2 – A temporary storage matrix of same size as mat1 and mat2. If None, it will be allocated inside the fx.

	tmp3 – A temporary storage matrix of same size as mat1 and mat2. If None, it will be allocated inside the fx.

	col_scale_type – A string if ‘all’ it scales mat1 by max(mat1) and similarly for mat2
otherwise, it scales by column

	Returns

	The maximum difference between the column normalized versions of mat1 and mat2

	
pyanp.limitmatrix.priority(matrix, limit_calc=<function calculus>)

	Calculates the limit matrix and extracts priority from it. Really just
a convenience function.

	Parameters

	
	matrix – The scaled supermatrix to calculate the priority for

	limit_calc – The limit matrix calculation to use

	Returns

	The priority as a series

	
pyanp.limitmatrix.priority_from_limit(limit_matrix)

	Calculates the priority from a limit matrix, i.e. sums columns and divides by the number of
columns.

	Parameters

	limit_matrix – The matrix to extract the priority from

	Returns

	1d numpy array of the priority

	
pyanp.limitmatrix.two_two_breakdown(mat, upper_right_indices)

	Given the indices for the upper right portion of a matrix, break the matrix
down into a 2x2 matrix with the submatrices in each piece. Useful for
limit matrix calculations that split the problem up into the hierarchical and
network components and do separate calculations and then bring them together.
:param mat: The matrix to split into

	A

	B

	C

	D

form, where A is the “upper_right_indcies” and D is the opposite

	Parameters

	upper_right_indices – List of indices of the upper right positions.

	Returns

	A list of [A, B, C, D] of those matrices

	
pyanp.limitmatrix.zero_cols(full_mat, non_zero=False)

	Returns the list of indices of columns that are zero or non_zero
depending on the parameter non_zero

	Parameters

	
	mat – The matrix to search over

	non_zero – If False, returns the indices of columns that are zero, otherwise
returns indices of columns that a not zero.

	Returns

	A list of indices of columns of the type determined by the parameter non_zero.

Example matrices module

This is where we store standard examples of pairwise and supermatrices.

	
pyanp.exmats.matrix_matching(df=None, description=None, keywords=None, size=None, author=None)

	Finds matrices that match search criteria

	Parameters

	
	df – The dataframe to search through, either SUPERMATRIX_EXS or PAIRWISE_EXS
if None we use SUPERMATRIX_EXS

	description – A substring to search through description

	keywords – A list of keywords to find

	size – The size

	author – The contributing author, a substring search

	Returns

	List of indices of the matches in the given dataframe

	
pyanp.exmats.pairwisematrix_ex(name=None, description=None, keywords=None, size=None, author=None)

	Find the pairwise matrix example that matches the conditions

	Parameters

	
	name – If not None, we find the single matrix with this name/id

	description – Substring search in description

	keywords – exact match keywords

	size – exact match size

	author – substring search author

	Returns

	A single numpy.array item if only one matches the constraint, or a panda.Series
indexed by name or the resulting numpy.array s.

	
pyanp.exmats.supermatrix_ex(name=None, description=None, keywords=None, size=None, author=None)

	Find the supermatrix example that matches the conditions

	Parameters

	
	name – If not None, we find the single matrix with this name/id

	description – Substring search in description

	keywords – exact match keywords

	size – exact match size

	author – substring search author

	Returns

	A single numpy.array item if only one matches the constraint, or a panda.Series
indexed by name or the resulting numpy.array s.

General functions module

Generally useful code goes in this module.

Generally useful math and other functions.

	
pyanp.general.get_matrix(fname_or_df, sheet=0) → numpy.ndarray

	Returns a dataframe from a csv/excel filename (or simply returns the
dataframe if it is passed as input

	Parameters

	fname_or_df – The file name to get as a dataframe, or a dataframe

(in which case that param is returned)

	Parameters

	sheet – If it is a filename, which sheet to use

	Returns

	The dataframe

	
pyanp.general.islist(val)

	Simple function to check if a value is list like object

	Parameters

	val – The object to check its listiness.

	Returns

	Boolean True/False

	
pyanp.general.linear_interpolate(xs, ys, x)

	Piecewise linear interpolation between a bunch of x and y coordinates.

	Parameters

	
	xs – Increasing x values (no dupes)

	ys – The y values

	x – The x value to linearly interpolate at

	Returns

	if x < xs[0], returns ys[0], if x > xs[-1], returns ys[-1]
else linearly interpolates.

	
pyanp.general.matrix_as_df(matrix: numpy.ndarray, index) → pandas.core.frame.DataFrame

	Returns a square numpy.ndarray as a dataframe with given row/col names

	Parameters

	
	matrix – The square numpy array

	index – The names of the rows (which is the same as the name of the
columns as a list of strings).

	Returns

	The dataframe

	
pyanp.general.unwrap_list(list_ish)

	Takes something that is a list(list(tuple(e1, e2))) and unwraps til we
have (e1, e2).

	Parameters

	list_ish – The list to unwrap

	Returns

	Unwrapped version of list

Direct data class

	
class pyanp.direct.Direct(alt_names=None)

	Represents the concept of directly setting data. It is a single user only
pyanp.prioritizer.Prioritizer instance.

	
__init__(alt_names=None)

	Initialize self. See help(type(self)) for accurate signature.

	
add_alt(alt_name: str) → None

	Adds an alternative.

	Parameters

	alt_name – The name of the alt to add.

	Returns

	Nothing

	Raises

	ValueError – If the alternative already existed

	
add_user(uname: str) → None

	Does nothing since Direct current does not have users.

	Parameters

	uname – The name of the user we should add

	Returns

	Nothing

	
priority(username=None, ptype: pyanp.prioritizer.PriorityType = None)

	Gets the priority for the given user. At the moment it simply ignores
user since direct data only stores one data set for all users.

	Parameters

	
	username – The name of the user, but it is ignored.

	ptype – Should we normalize, idealize, or leave the priority alone.

	Returns

	A pandas.Series whose index is the alternative names and whose values are the priorities.

	
usernames()

	Direct has no notion of users at the moment, so this returns the empty list.

	Returns

	Empty list

Prioritizer class

	
class pyanp.prioritizer.Prioritizer

	This class is the abstract representation of anything that prioritizes
a list of items. Examples include pyanp.pairwise.Pairwise
for doing group pairwise comparisons and pyanp.ahptree.AHPTree
for doing group AHP tree models.

	
add_alt(alt_name: str, ignore_existing=True) → None

	Add an alternative to the prioritizer. This should be overriden by
the implementing class.

	Parameters

	alt_name – The name of the alternative to add.

	Returns

	Nothing

	
add_user(uname)

	Adds a user to this prioritizer object.

	Parameters

	user_name – The name of the user to add

	Returns

	Nothing

	Raises

	ValueError – If the user already existed.

	
alt_names()

	
	Returns

	A list of the alts in this prioritizer object.

	
data_names(append_to=None, post_pend='') → str

	Return string of newline separated names for the data
that this prioritizer needs for each user.

	Parameters

	
	append_to – If not none, elements are appended here, otherwise
a new list is created.

	post_pend – A string to post_pend to each name

	Returns

	List of strings of names.

	
nalts()

	
	Returns

	The number of alternatives (things you are pairwise comparing)
in this group pairwise comparison object.

	
priority(username=None, ptype: pyanp.prioritizer.PriorityType = None) → pandas.core.series.Series

	Calculates the alternative priorities. Should be overriden by the
implementing class.

	Parameters

	user_name – The name/names of the users to calculate the priority

of. If None, we get the priority of the group average. If
it is a string, we get the priority of that user. If it is a list
of users, we get the priority of the group average for that list of
users.

	Parameters

	ptype – How should we normalize the resulting priorities
(if at all).

	Returns

	A pandas.Series whose indices are the alternative names and
whose values are the priorities of those alternatives.

	
priority_df(user_infos=None) → pandas.core.frame.DataFrame

	Returns the priority scores dataframe for all users and the group

	Parameters

	user_infos – A list of users to do this for, if None is a part
of this list, it means group average. If None, it defaults to
None plus all users.

	Returns

	pandas.DataFrame rows are alternatives, cols are users.

	
user_names()

	
	Returns

	A list of the users in this prioritizer object.

	
class pyanp.prioritizer.PriorityType

	An enumeration telling how to normalize priorities for a calculation

	
IDEALIZE = 3

	Divide priorities by max, so that the largest is 1.

	
NORMALIZE = 2

	Divide priorities by sum, so that they sum to 1.

	
RAW = 1

	Leave the priorities unchanged.

	
apply(vals)

	Returns a copy of the parameter vals that has been adjusted as this
PriorityType would.

	Parameters

	vals – A list-like object of values. We return a copy that is adjusted.

	Returns

	A list-like of the same type as ‘vals’ that has been normalized as

this PriorityType would do.

ANP Row Sensitivity

All ANP row sensitivity calculations are in this module.

	
pyanp.rowsens.calcp0(mat, row, cluster_nodes, orig, p0mode)

	Calculates the p0, or resting, value for the row sensitivity

	Parameters

	
	mat – The matrix to do row sensitivity on

	row – The row to do row sensitivity on

	cluster_nodes – The indices of the other nodes in the cluster that
row is in. Used for inluence_marginal() if p0mode is an integer
meaning smart mode for alt=p0mode :param orig: The original weight,
used if p0mode is not an integer (meaning smart) or a float
(meaning a direct p0 value).

	p0mode – This controls the calculation and has 3 cases:
Case 1: if it is a float, you are directly setting the p0 value to whatever p0mode is.
Case 2: if it is an integer, this is the smart p0 mode, and it treats p0mode as
the index of the alternative/node to make continuous.
Case 3: otherwise we assume you want original weights to be the p0 value, and
return the parameter orig

	Returns

	The p0 or resting value, see the p0mode parameter for more information

	
pyanp.rowsens.influence_fixed(mat, row, cluster_nodes=None, influence_nodes=None, delta=0.25, p0mode=0.5, limit_matrix_calc=<function calculus>, node_names=None, idealize=False)

	Calculates fixed influence, i.e. we do row sensitivity and calculate the difference

	Parameters

	
	mat – The scaled supermatrix to perform the calculation on

	row – The row to use for anp row sensitivity, or list of rows.

	cluster_nodes – If you wish to normalize by cluster, this should be the indices of the nodes that are
in row’s cluster (including row itself).

	influence_nodes – The indices of the nodes to calculate the influence of, with respect to row. If None
it calculates the influence of all nodes other than row.

	delta – How much to change from p0 for the fixed influence

	p0mode – This controls the calculation and has 3 cases:
Case 1: if it is a float, you are directly setting the p0 value to whatever p0mode is.
Case 2: if it is an integer, this is the smart p0 mode, and it treats p0mode as
the index of the alternative/node to make continuous.
Case 3: otherwise we assume you want original weights to be the p0 value, and
return the parameter orig

	limit_matrix_calc –

	node_names – If not None, it gives us a list of names to use for our indices for the
returning dataframe or series.

	idealize – If True, the influence_node scores are idealized, else they are normalized

	Returns

	A pandas.Series whose index is influence_nodes and whose values are the influence scores of those nodes
with respect to the row, if row is a single entry. If the row param is a list, it returns a pandas.Dataframe
whose rows are the influence_nodes, columns are the rows, and an additional row at the end for the
total influence.

	
pyanp.rowsens.influence_limit(mat, row, cluster_nodes=None, influence_nodes=None, delta=1e-06, p0mode=0.5, limit_matrix_calc=<function calculus>)

	Calculates the limit influence score of the influence_nodes with respect to row.

	Parameters

	
	mat – The scaled supermatrix to perform the calculation on

	row – The row to use for anp row sensitivity

	cluster_nodes – If you wish to normalize by cluster, this should be the indices of the nodes that are
in row’s cluster (including row itself).

	influence_nodes – The indices of the nodes to calculate the influence of, with respect to row. If None
it calculates the influence of all nodes other than row.

	delta – We use 1-delta for the p-value to plugin to approximate the limit as p -> 1

	p0mode – This controls the calculation and has 3 cases:
Case 1: if it is a float, you are directly setting the p0 value to whatever p0mode is.
Case 2: if it is an integer, this is the smart p0 mode, and it treats p0mode as
the index of the alternative/node to make continuous.
Case 3: otherwise we assume you want original weights to be the p0 value, and
return the parameter orig

	limit_matrix_calc – A function which takes a single input, the matrix to take the limit of.

	Returns

	A tuple of 2 items, the first is a pandas.Series whose indices are ‘Node 1’, ‘Node 2’
(and the indices after “Node ” are the influence_node indices)
and whose values are the limit value. The second element of the returned tuple is a pandas.Series
with the same indices and whose values are the p0 values we used for that alternative.

	
pyanp.rowsens.influence_marginal(mat, row, influence_nodes=None, cluster_nodes=None, left_or_right=None, delta=1e-06, p0mode=0.5, limit_matrix_calc=<function calculus>)

	Calculates the marginal influence

	Parameters

	
	mat – The scaled supermatrix to calculate marginal influence on

	row – The index of the row to perform the marginal influence on

	influence_nodes – The nodes to calculate the marginal influence of the row upon, if None then it assumes
all nodes except row.

	cluster_nodes – The other nodes in the parameter row’s cluster (including row itself),
so we can scale by cluster. If None we do not scale by cluster.

	left_or_right – An integer telling whether we should do left-hand side derivative, right-hand side
derivative or average them. If left_or_right < 0, then we do LHS deriv. If left_or_right > 0, we do RHS deriv.
Finally, if left_or_right == 0, we average LHS and RHS.

	delta – The delta_x to use for the derivative calculation.

	p0mode – This controls the calculation and has 3 cases:
Case 1: if it is a float, you are directly setting the p0 value to whatever p0mode is.
Case 2: if it is an integer, this is the smart p0 mode, and it treats p0mode as
the index of the alternative/node to make continuous.
Case 3: otherwise we assume you want original weights to be the p0 value, and
return the parameter orig

	limit_matrix_calc – A function which takes a single input, the matrix to take the limit of.

	Returns

	A pandas.Series whose indices are influence_nodes and whose values are the marginal influence
scores of those nodes with respect to the given row.

	
pyanp.rowsens.influence_perspective(matrix, rows, cluster_nodes=None, influence_nodes=None, limit_matrix_calc=<function calculus>, graph=True, node_names=None, show_diffs=False, idealize=False, p=0.99999)

	Calculates the direct influence score, i.e. it calculates anp row sensitivity for each of pvals values and
stores the new scores of the influence_nodes.

	Parameters

	
	mat – The scaled supermatrix to perform the calculation on

	rows – The rows to use for anp row sensitivity and will be the columns of the result

	cluster_nodes – If you wish to normalize by cluster, this should be the indices of the nodes that are
in row’s cluster (including row itself).

	influence_nodes – The indices of the nodes to calculate the influence of, with respect to row. If None
it calculates the influence of all nodes other than row.

	limit_matrix_calc – A function which takes a single input, the matrix to take the limit of.

	graph – If True, we return a matplotlib graph, otherwise we return pandas.DataFrame, p0vals

	node_names – If None, we use Node 0, Node 1, … to label nodes, otherwise we use this.

	show_diffs – If True we return changes from original (and remove original column), otherwise we
return the new scores.

	idealize – If True we idealize the scores, otherwise we normalize

	p – The p value to use for the perspective calculation.

	Returns

	If graph=True, we return the dataframe and create a matplotlib object and call plt.show().
Otherwise we return the pandas.DataFrame whose rows are the influence_nodes and columns are
the rows. There is an additional column for original weights

	
pyanp.rowsens.influence_rank(mat, row, cluster_nodes=None, influence_nodes=None, limit_matrix_calc=<function calculus>, rank_change_nodes=None, error=1e-05, upper_lower_both=0, round_to_decimal=5, return_full_info=False)

	Calculates rank influence scores.

	Parameters

	
	mat – The scaled supermatrix to perform the calculation on

	row – The row to use for anp row sensitivity

	cluster_nodes – If you wish to normalize by cluster, this should be the indices of the nodes that are
in row’s cluster (including row itself).

	influence_nodes – The indices of the nodes to calculate the influence of, with respect to row. If None
it calculates the influence of all nodes other than row.

	limit_matrix_calc – A function with one parameter, that calculates the limit matrix.

	rank_change_nodes – The nodes to look for rank change at

	error – While we narrow down our search for the p-value that causes a rank change, how close do we want
the values between a change happening and not, to be.

	upper_lower_both – Do we want to:
Case 1: look for rank change only by changing p > 0.5=p0, if so upper_lower_both > 0.
Case 2: look for rank change only by changing p < 0.5=p0, if so upper_lower_both < 0.
Case 3: look for rank change by changing p>0.5 and p<0.5, if so upper_lower_both = 0.

	round_to_decimal – How many decimals should we round the score to for ranking purposes

	return_full_info – If True returns more info, see the return section for more details

	Returns

	A list of one or more numbers, controlled by return_full_info and upper_lower_both:

	If upper_lower_both < 0: our p-val search will only be for pval < 0.5

	If return_full_info is True:
We return pval_where_rank_chg_happens, score_of_that_pval

	Otherwise:
We return score_of_that_pval

	If upper_lower_both > 0: our pval search will only be for pval > 0.5

	If return_full_info is True:
We return pval_where_rank_chg_happens, score_of_that_pval

	Otherwise:
We return score_of_that_pval

	If upper_lower_both = 0: we check both lower and upper

	If return_full_info is True:
We return max_of_upper_lower_scores, lower_rank_value, lower_rank_chg_score, upper_rank_value, upper_rank_chg_score

	Otherwise we return:
max_of_upper_lower_scores

	
pyanp.rowsens.influence_table(mat, row, pvals=None, cluster_nodes=None, influence_nodes=None, p0mode=None, limit_matrix_calc=<function calculus>, graph=True, return_p0vals=False, node_names=None)

	Calculates the direct influence score, i.e. it calculates anp row sensitivity for each of pvals values and
stores the new scores of the influence_nodes.

	Parameters

	
	mat – The scaled supermatrix to perform the calculation on

	row – The row to use for anp row sensitivity

	pvals – The values to set p to, this should be a list (or list like) object of values before 0 and 1.

	cluster_nodes – If you wish to normalize by cluster, this should be the indices of the nodes that are
in row’s cluster (including row itself).

	influence_nodes – The indices of the nodes to calculate the influence of, with respect to row. If None
it calculates the influence of all nodes other than row.

	p0mode – This controls the calculation and has 3 cases:
Case 1: if it is a float, you are directly setting the p0 value to whatever p0mode is.
Case 2: if it is an integer, this is the smart p0 mode, and it treats p0mode as
the index of the alternative/node to make continuous.
Case 3: otherwise we assume you want original weights to be the p0 value, and
return the parameter orig

	limit_matrix_calc – A function which takes a single input, the matrix to take the limit of.

	graph – If True, we return a matplotlib graph, otherwise we return pandas.DataFrame, p0vals

	return_p0vals – If true and not doing graphing, we return a tuple of the dataframe of
the results, and the 2nd item as Series whose index is the names of the nodes, and whose values
are the (x,y) position of the resting p0 value

	node_names – If None, we use Node 0, Node 1, … to label nodes, otherwise we use this.

	Returns

	If graph=True, we return nothing, but create a matplotlib object and call plt.show(). Otherwise
if return_p0vals is True
we return a pair of items. The first is the dataframe of results, whose indices are “Node 1”, “Node 2”, …
which corresponds to influence_nodes (and the indices after “Node ” are the influence_node indices)
and has 2 columns, ‘x’ is the pvals and ‘y’ is the resulting influence
score (i.e. changed priority). The second element is a pd.Series whose indices is the same as the dataframe
and whose values are pairs of items (x,y) where x is the p0 value for the given alternative and the y is the
influence score of that alternative at that p-value.

If return_p0vals is False we return the first dataframe item only.

	
pyanp.rowsens.influence_table_plot(df, p0s)

	Graphs the return value of influence_table(graph=False), useful if you want to have both the graph done
and also the table of values.
:param df: The 1st returned component from influence_table(graph=False): a dataframe
:param p0s: The 2nd returned component from influence_table(graph=False): a Series of (x,y)’s
:return: Nothing, but does call plt.show() to make the matplotlib graph visible.

	
pyanp.rowsens.p0mode_is_direct(p0mode_value)

	Is the p0mode value a “directly set value”. See calcp0 for more info on p0mode values.

	Parameters

	p0mode_value – If it is an float, this p0mode value is the direct
value to use for p0.

	Returns

	True | False

	
pyanp.rowsens.p0mode_is_smart(p0mode_value) → bool

	Is the p0mode value a “smart value”. See calcp0 for more info on p0mode values.

	Parameters

	p0mode_value – If it is an int, this p0mode value represents doing
smart p0 making the node of that index (i.e.p0mode’s value) smooth

	Returns

	True | False

	
pyanp.rowsens.p0mode_name(p0mode_value) → str

	Tells what kind of p0 the p0mode value is

	Parameters

	p0mode_value – The p0mode value to get a name of

	Returns

	A string/human readable bit of information about the p0mode.

	
pyanp.rowsens.rank_change(vec1, vec2, places_to_rank, rank_change_places=None, round_to_decimal=5)

	A calculation that rounds 2 vectors to round_to_decimal places and then looks to see if
the ranking of rounded vec1 is different from rounded vec2.

	Parameters

	
	vec1 – A list or list-like object to check rank changing

	vec2 – Another list or list-like object to check rank changing

	places_to_rank – Indices to rank.

	rank_change_places – Of the indices we are ranking, which ones are we checking for a change (if None we
check all indices for rank change).

	round_to_decimal – The number of decimal places to round to, before checking for rank changes

	Returns

	True if a rank change happen and False otherwise

	
pyanp.rowsens.rescale(avec, idealize=False, inplace=True)

	Rescales a vector.
:param avec: The vector like object to rescale

	Parameters

	
	idealize – If True we idealize avec, else we normalize

	inplace – If True, we rescale in place, otherwise we return the rescaled vector

	Returns

	An np.array with the normalized or idealized vector if inplace is False, otherwise
returns nothing and avec is changed in place

	
pyanp.rowsens.row_adjust(mat, row, p, cluster_nodes=None, inplace=False, p0mode=None)

	Performs an actual row adjust on the matrix, either inplace or returns an adjusted copy, leaving the
original unchanged.

	Parameters

	
	mat – The scaled supermatrix to perform anp row sensitivity on.

	row – The row index to perform the anp row sensitivity on

	p – The p value to adjust to

	cluster_nodes – The other nodes in the parameter row’s cluster (including row itself),
so we can scale by cluster. If None we do not scale by cluster.

	inplace – Should we change the matrix mat, or should we create a new
one, adjust it, and return it?

	p0mode – See calcp0() function

	Returns

	The adjusted matrix if inplace=False, and otherwise returns nothing
and changes the matrix mat.

	
pyanp.rowsens.row_adjust_priority(mat, row, p, cluster_nodes=None, p0mode=None, limit_matrix_calc=<function calculus>, normalize_to_orig=True)

	Adjusts a row of matrix and recalculates the priorities of all the nodes.

	Parameters

	
	mat – The scaled supermatrix to perform the calculation on

	row – The row to use for anp row sensitivity

	cluster_nodes – If you wish to normalize by cluster, this should be the indices of the nodes that are
in row’s cluster (including row itself).

	p0mode – This controls the calculation and has 3 cases:
Case 1: if it is a float, you are directly setting the p0 value to whatever p0mode is.
Case 2: if it is an integer, this is the smart p0 mode, and it treats p0mode as
the index of the alternative/node to make continuous.
Case 3: otherwise we assume you want original weights to be the p0 value, and
return the parameter orig

	limit_matrix_calc – A function which takes a single input, the matrix to take the limit of.

	normalize_to_orig – If True we normalize the returning priority score so that the [row] index of it has
the same value as the original and the other values are rescaled. Otherwise we simply normalize the priority
vector directly.

Rating class

Class for all rating related things.

	
class pyanp.rating.Rating

	Represents rating a full group of alternatives for a group of users.
The data is essentially a dataframe and a WordEval object to
evaluate that to scores.

	
add_alt(alt_name, ignore_existing=True)

	Adds an alternative/s, by name

	Parameters

	
	alt_name – A str name, or a list of names to add.

	ignore_existing – If True and we try to add an existing alternative
we simply skip by, otherwise we throw an error.

	Returns

	Nothing

	
add_user(uname)

	Adds one or more uses to this system.

	Parameters

	uname – The str name of the user to add, or a list of str names
of users to add.

	Returns

	Nothing

	
alt_names()

	
	Returns

	A list of str alternative names in this system. Ordered as the
data in the ratings votes are ordered (columns).

	
is_alt(alt: str) → bool

	Tells if the item is an alternative

	Parameters

	alt – The name of the alternative to check for.

	Returns

	True/False

	
is_user(uname: str)

	
	Parameters

	uname – The name of the user to check for

	Returns

	True/False if the given user exists in the system.

	
nalts() → int

	
	Returns

	The number of alternatives in this system.

	
nusers() → int

	The number of users in this system.

	Returns

	The number of users

	
priority(username=None, ptype: pyanp.prioritizer.PriorityType = None)

	Calculates the alternative priority for the specified user/users and the
given normalizer type.

	Parameters

	
	username – The name (this of names) of the user (users) to get
the overall priority of. If None, then we return the total group
average.

	ptype – How should we normalize?

	Returns

	A pandas.Series whose index is self.alt_names() and whose values
are the priorities.

	
set_word_eval(param)

	Sets the WordEval object

	Parameters

	param – This could either be a WordEval object, or a something
that WordEval(param) would work with

	Returns

	None

	
user_names()

	
	Returns

	A list of str names of users in this system. Ordered as the
data in the ratings votes are ordered (the rows).

	
vote_column(alt_name, votes, createUnknownUsers=True)

	Specifies all votes (across all users) for a specific alternative.

	Parameters

	
	alt_name – The name of the alternative to set the data for

	votes – Should either be a list with self.nusers() items, or a
pandas.Series or dict with usernames as index.

	createUnknownUsers – If True and unknown users appear in the index
of votes, we will create those users before trying to do the
assignment.

	Returns

	Nothing

	
vote_values(username=None, alt_name=None)

	Gets the numeric vote values for the given user/alternative (or whole
column or dataframe).

	Parameters

	
	username – If None, we get the values for all users. If a list
get the values for each user in the list, or it could just be a single
username.

	alt_name – Either None, meaing get it for all alternatives, or
a single alternative name (to get one column).

	Returns

	If username=None and alt_name=None, returns a pandas.DataFrame
of the numeric values. Otherwise returns a pandas.Series of values
as the result.

	
class pyanp.rating.WordEval(vals)

	Information for a Word Evaluator, i.e. a function that inputs a word and
outputs a numeric value.

	
eval(word)

	Evaluates a word, or a pandas.Series of words.

	Parameters

	word – The string word to evaluate to a number, or a pandas.Series
of data.

	Returns

	The float value if we can evaluate, or None if a single value
is passed in. If the word was actually a pandas.Series, we return
a pandas.Series with the same index.

	
get_key(word)

	Find the key word for this word. A WordEval has a list of words that
represent different levels/numerical values. Those words are called
keys. In addition, each key has a list of synonyms. For instance
the keyword “high” might have a synonym “hi” or “h”. In that case
get_key(“hi”) would return “high”.

	Parameters

	word – The word to look up a synonym for.

	Returns

	The key if this word is a key or a synonym. If it is not a
synonym or key, we return None.

	
keys_match_score(word_list)

	This function tells us how well this WordEval interprets a list of
words. It is used for searhcing through the “standard list” of words
to find the best match for a data set.

	Parameters

	word_list – The list-like of words to see how we can match.

	Returns

	A score <= 1. A positive number means no missing words, i.e.
every word in word_list has a value in this WordEval object.
The larger number means our word_list uses more of the names in this
WordEval object.

	
class pyanp.rating.WordEvalType

	What kind of WordEval will we use.

	
pyanp.rating.best_std_word_evaluator(list_of_words, return_name=True)

	Finds the WordEval in STD_WORD_EVALUATOR that best matches the list of words

	Parameters

	
	list_of_words – The list of words to look for best matches of

	return_name – Should we return the best WordEval or its name in the
STD_WORD_EVALUATOR.

	Returns

	The name of the best match, or the best match WordEval

	
pyanp.rating.clean_word(word: str) → str

	Cleans a word before subjecting it to ratings lookup

	Parameters

	word – The word to clean.

	Returns

	The sanitized word

ANP structure module

Group enabled ANPNetwork class and supporting classes.

	
class pyanp.anp.ANPCluster(network, name: str)

	A cluster in an ANP object

	Parameters

	
	network – The ANPNetowrk object this cluster is in.

	name – The name of the cluster to create.

	
add_node(*nodes) → None

	Adds one or more nodes

	Parameters

	nodes – A vararg list of node names to add to this cluster.
The names should all be strings.

	Returns

	Nonthing

	
cluster_connect(dest_cluster) → None

	Make a cluster->cluster connection from this node to the destination.

	Parameters

	dest_cluster – Either the ANPCluster object to connect to, or
the name of the destination cluster.

	Returns

	

	
data_names(append_to=None)

	Used when exporting an Excel header for a network, for its data.

	Parameters

	append_to – If not None, append header strings to this list.
Otherwise we create a new list to append to.

	Returns

	List of strings of comparison name headers. If append_to is not
None, we return append_to with the new string headers appended.

	
is_node(node_name: str) → bool

	Does a node by that name exist in this cluster

	Parameters

	node_name – The name of the node to look for

	Returns

	True/False

	
nnodes() → int

	
	Returns

	The number of nodes in this cluster.

	
node_names() → list

	
	Returns

	List of the string names of the nodes in this cluster

	
node_obj(node_name)

	Get a node in this cluster.

	Parameters

	node_name – The node as either a string name, integer position, or
simply the ANPObject, in which case there is nothing to do except
return it.

	Returns

	ANPNode object. If it wasn’t found, None is returned.

	
node_objs() → list

	
	Returns

	List of the ANPNode objects in this cluster.

	
set_prioritizer_type(prioritizer_class) → None

	Sets the cluster prioritizer type

	Parameters

	prioritizer_class – The new type

	Returns

	None

	
class pyanp.anp.ANPNetwork(create_alts_cluster=True)

	Represents an ANP prioritizer. Has clusters/nodes, comparisons, etc.

	Parameters

	create_alts_cluster – If True (which is the default) we start with a
cluster that is the alternatives cluster. Otherwise the model starts
empty.

	
add_alt(alt_name: str)

	Adds an alternative to the model:
1. Adds the altenrative to alts_cluster if not None
2. For each node with a subnetwork, we add the alternative to that subnetwork.

	Parameters

	alt_name – The name of the alternative to add

	Returns

	Nothing

	
add_cluster(*args) → pyanp.anp.ANPCluster

	Adds one or more clusters to a network

	Parameters

	args – Can be either a single string, or a list of strings

	Returns

	ANPCluster object or list of ANPCluster objects

	
add_node(cl, *nodes)

	Adds nodes to a cluster

	Parameters

	
	cl – The cluster name or object

	nodes – The name or names of the nodes

	Returns

	Nothing

	
add_user(uname, ignore_dupe=False)

	Adds a user to the system

	Parameters

	uname – The name of the new user

	Returns

	Nothing

:raise ValueError If the user already existed

	
alt_names() → list

	
	Returns

	List of alt names in this ANP model

	
cluster_incon_std_df(user_infos=None) → pandas.core.frame.DataFrame

	
	Parameters

	user_infos – A list of users to do this for, if None is a part
of this list, it means group average. If None, it defaults to
None plus all users.

	Returns

	DataFrame whose columns are clusters, rows
are users (as controlled by user_infos params) and the value is
the inconsistency for the given user on the given comparison.

	
cluster_names() → list

	
	Returns

	List of string names of the clusters

	
cluster_obj(cluster_info: Union[pyanp.anp.ANPCluster, str]) → pyanp.anp.ANPCluster

	Returns the cluster with given information

	Parameters

	cluster_info – Either the name of the cluster object to get
or the cluster object, or its int position

	Returns

	The ANPCluster object

	
cluster_objs() → list

	
	Returns

	List of ANPCluster objects in the network

	
cluster_prioritizer(wrtcluster=None)

	Gets the prioritizer for the clusters wrt a given cluster.

	Parameters

	wrtcluster – WRT cluster identifier as expected by cluster_obj() function.
If None, then we return a dictionary indexed by cluster names and values
are the prioritizers

	Returns

	THe prioritizer for that cluster, or a dictionary of all cluster
prioritizers

	
data_names()

	Returns the column headers needed to fill in the data for this model

	Returns

	A list of strings that would be usable in excel for parsing
headers

	
global_priority(username=None) → pandas.core.series.Series

	
	Parameters

	username – If None, gets it for all users. Otherwise gets it for
the user specified. It can also be a list of users, in which case
we combine them, as per the theory.

	Returns

	The global priorities Series, index by node name

	
global_priority_df(user_infos=None) → pandas.core.frame.DataFrame

	
	Parameters

	user_infos – A list of users to do this for, if None is a part
of this list, it means group average. If None, it defaults to
None plus all users.

	Returns

	The global priorities dataframe. Rows are the nodes and
columns are the users. The first user/column is the Group Average

	
has_subnet() → bool

	
	Returns

	True/False telling if some node had a subentwork

	
import_pw_series(series: pandas.core.series.Series) → None

	Takes in a well titled series of data, and pushes it into the right
node’s prioritizer (or cluster).
The name should be A vs B wrt C, where A, B, C are node or cluster names.

	Parameters

	series – The series of data for each user. Index is usernames.
Values are the votes.

	Returns

	Nothing

	
import_rating_series(series: pandas.core.series.Series)

	Takes in a well titled series of data, and pushes it into the right
node’s prioritizer as ratings (or cluster).
Title should be A wrt B, where A and B are either both node names or
both column names.

	Parameters

	series – The series of data for each user. Index is usernames.
Values are the votes.

	Returns

	Nothing

	
invert_priority(p)

	Makes a copy of the list like element p, and inverts. The current
standard inversion is 1-p. There could be others implemented later.

	Parameters

	p – The list like to invert

	Returns

	New list-like of same type as p, with inverted priorities

	
is_alt(altname) → bool

	Checks if an alternative exists

	Parameters

	altname – The alterantive name to look for

	Returns

	bool

	
is_user(uname) → bool

	Checks if a user exists

	Parameters

	uname – The name of the user to check for

	Returns

	bool

	
limit_matrix(username=None, as_df=False)

	
	Parameters

	
	username – If None, gets it for all users. Otherwise gets it for
the user specified. It can also be a list of users, in which case
we combine them, as per the theory.

	as_df – If True, returns as a dataframe with index and column
names as the names of the nodes in the network. Otherwise just
returns the array.

	Returns

	The limit supermatrix

	
nclusters() → int

	
	Returns

	The number of clusters in the network.

	
nnodes(cluster=None) → int

	Returns the number of nodes in the network, or a cluster.

	Parameters

	cluster – If None, we return the number of nodes in the network.
Otherwise this is the integer position, string name, or ANPCluster
object of the cluster to get the node count within.

	Returns

	The count.

	
node_connect(src_node, dest_node)

	connects 2 nodes

	Parameters

	
	src_node – Source node as prescribed by node_object() function

	dest_node – Destination node as prescribed by node_object() function

	Returns

	Nothing

	
node_connection_matrix(new_mat: numpy.ndarray = None)

	Returns the current node conneciton matrix if new_mat is None.
Otherwise, for each item [row, col] in the matrix with a value of 1
we connect from node[row] to node[col].

	Parameters

	new_mat – The new node connection matrix. If None, we return
the current one.

	Returns

	Current connection matrix.

	
node_connections() → numpy.ndarray

	Returns the node conneciton matrix for this network.
:return: A numpy array of shape [nnode, nnodes] where item [row, col]

1 means there is a node connection from col -> row, and 0 means
no connection.

	
node_incon_std_df(user_infos=None) → pandas.core.frame.DataFrame

	
	Parameters

	user_infos – A list of users to do this for, if None is a part
of this list, it means group average. If None, it defaults to
None plus all users.

	Returns

	DataFrame whose columns are (node,cluster) pairs, rows
are users (as controlled by user_infos params) and the value is
the inconsistency for the given user on the given comparison.

	
node_invert(node, value=None)

	Either sets, or tells if a node is inverted

	Parameters

	
	node – The node to do this on, as expected by node_obj() function

	value – If None, we return the boolean about if this node is
inverted. Otherwise specifies the new value.

	Returns

	T/F if value=None, telling if the node is inverted. Otherwise
returns nothing.

	
node_names(cluster=None) → list

	Returns a list of nodes in this network, organized by cluster

	Parameters

	cluster – If None, we get all nodes in network, else we get nodes
in that cluster, otherwise format as specified by cluster_obj() function.

	Returns

	List of strs of node names

	
node_obj(node_name) → pyanp.anp.ANPNode

	Gets the ANPNode object of the node with the given name

	Parameters

	node_name – The name of the node to get, or it’s overall integer
position, or the ANPNode object itself

	Returns

	The ANPNode if it exists, or None

	
node_objs() → list

	Returns a list of ANPNodes in this network, organized by cluster

	Returns

	List of strs of node names

	
node_objs_with_subnet()

	
	Returns

	List of ANPNode objects in this network that have v1 subnets

	
node_prioritizer(wrtnode=None, cluster=None)

	Gets the prioritizer for node->cluster connection

	Parameters

	
	wrtnode – The node as understood by node_obj() function.

	cluster – Cluster as understood by cluster_obj() function.

	Returns

	If both wrtnode and cluster are specified, a single node prioritizer
is returned for that comparison (or None if there was nothing there).
Otherwise it returns a dictionary indexed by [wrtnode, cluster] and
whose values are the prioritizers for that (only the non-None ones).

	
nusers() → int

	
	Returns

	The number of users

	
priority(username=None, ptype: pyanp.prioritizer.PriorityType = None) → pandas.core.series.Series

	Synthesize and return the alternative scores

	Parameters

	
	username – If None, gets it for all users. Otherwise gets it for
the user specified. It can also be a list of users, in which case
we combine them, as per the theory.

	ptype – The priority type to use

	Returns

	A pandas.Series indexed on alt names, values are the score

	
scaled_supermatrix(username=None, as_df=False) → numpy.ndarray

	
	Parameters

	
	username – If None, gets it for all users. Otherwise gets it for
the user specified. It can also be a list of users, in which case
we combine them, as per the theory.

	as_df – If True, returns as a dataframe with index and column
names as the names of the nodes in the network. Otherwise just
returns the array.

	Returns

	The scaled supermatrix

	
set_alts_cluster(new_cluster)

	Sets the new alternatives cluster

	Parameters

	new_cluster – Cluster specified as cluster_obj() expects.

	Returns

	Nothing

	
set_pairwise_from_supermatrix(mat, username='Imported')

	Sets up all pairwise comparisons from supermatrix

	Parameters

	mat – As numpy array

	Returns

	Nothing

	
structure_priority(username=None, ptype: pyanp.prioritizer.PriorityType = None, alt_names=None) → pandas.core.series.Series

	

	
subnet(wrtnode)

	Makes wrtnode have a subnetwork if it did not already.

	Parameters

	wrtnode – The node to give a subnetwork to, or get the subnetwork
of. Node specified as node_obj() function expects.

	Returns

	The ANPNetwork that is the subnet of this node

	
subnet_synthesize(username=None, ptype: pyanp.prioritizer.PriorityType = None)

	Does the standard V1 subnetowrk synthesis.

	Parameters

	username – The user/users to synthesize for. If None, we group
synthesize across all. If a single user, we sythesize for that user
across all. If it is a list, we synthesize for the group that is that
list of users.

	Returns

	Nothing

	
synthesize_combine(priorities: pandas.core.series.Series, alt_scores: dict)

	Performs the actual sythesis step from anp v1 synthesis.

	Parameters

	
	priorities – Priorities of the subnetworks

	alt_scores – Alt scores as dictionary, keys are subnetwork names
values are Series whose keys are alt names.

	Returns

	Series whose keys are alt names, and whose values are the
synthesized scores.

	
unscaled_supermatrix(username=None, as_df=False) → numpy.array

	
	Parameters

	
	username – If None, gets it for all users. Otherwise gets it for
the user specified. It can also be a list of users, in which case
we combine them, as per the theory.

	as_df – If True, returns as a dataframe with index and column
names as the names of the nodes in the network. Otherwise just
returns the array.

	Returns

	The unscaled supermatrix as a numpy.array of shape [nnode, nnodes]

	
user_names() → list

	
	Returns

	List of names of the users

	
class pyanp.anp.ANPNode(network, cluster, name: str)

	A node inside a cluster, inside a netowrk. The basic building block of
an ANP netowrk.

	Parameters

	
	network – An ANPNetwork object that this node lives inside.

	cluster – An ANPCluster object that this node lives inside.

	name – The name of this node.

	
data_names(append_to=None)

	Used when exporting an Excel header for a network, for its data.

	Parameters

	append_to – If not None, append header strings to this list.
Otherwise we create a new list to append to.

	Returns

	List of strings of comparison name headers. If append_to is not
None, we return append_to with the new string headers appended.

	
get_node_prioritizer(dest_node, create=False, create_class=<class 'pyanp.pairwise.Pairwise'>, dest_is_cluster=False) → pyanp.prioritizer.Prioritizer

	Gets the node prioritizer for the other_node

	Parameters

	dest_node – The node as a int, str, or ANPNode object.

	Returns

	The prioritizer if it exists, or None

	
get_unscaled_column(username=None) → pandas.core.series.Series

	Returns the column in the unscaled supermatrix for this node.

	Parameters

	username – The user/users to do this for. Typical Prioritizer
calculation usage, i.e. None means do for all group average.

	Returns

	A pandas series indexed by the node names.

	
is_node_cluster_connection(dest_cluster: str) → bool

	Is this node connected to a cluster.

	Parameters

	dest_cluster – The name of the cluster

	Returns

	True/False

	
is_node_node_connection(dest_node) → bool

	Checks if there is a node connection from this node to dest_node

	Parameters

	dest_node – The node as a int, str, or ANPNode object.

	Returns

	

	
node_connect(dest_node) → None

	‘
Make a node connection from this node to dest_node

	Parameters

	dest_node – The destination node as a str, int, or ANPNode. It
can be a list of nodes, and then we will coonect each node from
this node. The dest_node should be in any format accepted by
ANPNetwork._get_node()

	
set_node_prioritizer_type(destNode, prioritizer_class)

	Sets the node prioritizer type

	Parameters

	
	destNode – An ANPNode object, string, or integer location

	prioritizer_class – The new type

	Returns

	None

	
pyanp.anp.anp_from_dict(cluster_dict: dict) → pyanp.anp.ANPNetwork

	Creates an ANPNetwork from a dictionary whose keys are cluster names
and whose values are list of node names in that cluster

	Parameters

	cluster_dict – Keys are cluster names. If the cluster name starts
with *, that is the alternatives cluster (and the asterisk is removed
from the name). The values are list of strings that are the names
of the nodes in that network

	Returns

	The ANPNetwork with that structure

	
pyanp.anp.anp_from_excel(excel_fname: str) → pyanp.anp.ANPNetwork

	Parses an excel file to get an ANPNetwork

	Parameters

	excel_fname – The name of the excel file

	Returns

	The newly created ANPNetwork object

	
pyanp.anp.anp_from_scaled_supermatrix(supermatrix)

	Creates an ANPNetwork object from a scaled supermatrix. We do this by:
1. Parsing the supermatrix and using row sums across columns to figure out clusters
2. We use pairwise comparison objects for each node and cluster comparison
3. We use the ratio of the priorities from the supermatrix to get the votes

	Parameters

	supermatrix – The super matrix

	Returns

	

	
pyanp.anp.anp_manual_scales_from_excel(anp: pyanp.anp.ANPNetwork, excel_fname)

	Parses manual rating scales from an Excel file

	Parameters

	
	anp – The model to put the scale values in.

	excel_fname – The string file name of the excel file with the data

	Returns

	Nothing

	
pyanp.anp.clean_name(name: str) → str

	
Cleans up a string for usage by:

	stripping off begging and ending spaces

	All spaces convert to one space

	and

are treated like a space

	param name

	The string name to be cleaned

	return

	The cleaned name.

	
pyanp.anp.get_item(tbl: dict, key)

	Looks up an item in a dictionary by key first, assuming the key is in the
dictionary. Otherwise, it checks if the key is an integer, and returns
the item in that position.

	Parameters

	
	tbl – The dictionary to look in

	key – The key, or integer position to get the item of

	Returns

	The item, or it not found, None

	
pyanp.anp.is_pw_col_name(col: str) → bool

	Checks to see if the name matches the naming convention for a pairwise
comparison, i.e. A vs B wrt C

	Parameters

	col – The title of the column to check

	Returns

	T/F

	
pyanp.anp.is_rating_col_name(col: str) → bool

	Checks to see if the name matches the naming convention for a rating
column of data, i.e. A wrt B

	Parameters

	col – The name of the column

	Returns

	T/F

	
pyanp.anp.sum_subnetwork_formula(priorities: pandas.core.series.Series, dict_of_series: dict)

	A function that takes the weighted sum of values. Used for synthesis.

	Parameters

	
	priorities – Series whose index are the nodes with subnetworks and
values are their weights.

	dict_of_series – A dictionary whose keys are the same as the keys of
priorities, i.e. the nodes with subnetworks. The values are Series
whose keys are alternative names and values are the synthesized
alternative scores under that subnetwork.

	Returns

	

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyanp	

 	
 	
 pyanp.anp	

 	
 	
 pyanp.exmats	

 	
 	
 pyanp.general	

 	
 	
 pyanp.limitmatrix	

 	
 	
 pyanp.pairwise	

 	
 	
 pyanp.priority	

 	
 	
 pyanp.rating	

 	
 	
 pyanp.rowsens	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	__init__() (pyanp.ahptree.AHPTree method)

 	(pyanp.direct.Direct method)

 	
 	_mat_pow2() (in module pyanp.limitmatrix)

A

 	
 	add_alt() (pyanp.ahptree.AHPTree method)

 	(pyanp.anp.ANPNetwork method)

 	(pyanp.direct.Direct method)

 	(pyanp.pairwise.Pairwise method)

 	(pyanp.prioritizer.Prioritizer method)

 	(pyanp.rating.Rating method)

 	add_child() (pyanp.ahptree.AHPTree method)

 	add_cluster() (pyanp.anp.ANPNetwork method)

 	add_node() (pyanp.anp.ANPCluster method)

 	(pyanp.anp.ANPNetwork method)

 	add_place() (in module pyanp.pairwise)

 	add_user() (pyanp.ahptree.AHPTree method)

 	(pyanp.anp.ANPNetwork method)

 	(pyanp.direct.Direct method)

 	(pyanp.pairwise.Pairwise method)

 	(pyanp.prioritizer.Prioritizer method)

 	(pyanp.rating.Rating method)

 	
 	AHPTree (class in pyanp.ahptree)

 	alt_direct() (pyanp.ahptree.AHPTree method)

 	alt_incon_std() (pyanp.ahptree.AHPTree method)

 	alt_index() (pyanp.pairwise.Pairwise method)

 	alt_names() (pyanp.anp.ANPNetwork method)

 	(pyanp.pairwise.Pairwise method)

 	(pyanp.prioritizer.Prioritizer method)

 	(pyanp.rating.Rating method)

 	alt_pwmatrix() (pyanp.ahptree.AHPTree method)

 	altpw() (pyanp.ahptree.AHPTree method)

 	anp_from_dict() (in module pyanp.anp)

 	anp_from_excel() (in module pyanp.anp)

 	anp_from_scaled_supermatrix() (in module pyanp.anp)

 	anp_manual_scales_from_excel() (in module pyanp.anp)

 	ANPCluster (class in pyanp.anp)

 	ANPNetwork (class in pyanp.anp)

 	ANPNode (class in pyanp.anp)

 	apply() (pyanp.prioritizer.PriorityType method)

B

 	
 	best_std_word_evaluator() (in module pyanp.rating)

C

 	
 	calcp0() (in module pyanp.rowsens)

 	calculus() (in module pyanp.limitmatrix)

 	clean_name() (in module pyanp.anp)

 	clean_word() (in module pyanp.rating)

 	cluster_connect() (pyanp.anp.ANPCluster method)

 	
 	cluster_incon_std_df() (pyanp.anp.ANPNetwork method)

 	cluster_names() (pyanp.anp.ANPNetwork method)

 	cluster_obj() (pyanp.anp.ANPNetwork method)

 	cluster_objs() (pyanp.anp.ANPNetwork method)

 	cluster_prioritizer() (pyanp.anp.ANPNetwork method)

D

 	
 	data_names() (pyanp.anp.ANPCluster method)

 	(pyanp.anp.ANPNetwork method)

 	(pyanp.anp.ANPNode method)

 	(pyanp.pairwise.Pairwise method)

 	(pyanp.prioritizer.Prioritizer method)

 	
 	Direct (class in pyanp.direct)

E

 	
 	eval() (pyanp.rating.WordEval method)

G

 	
 	geom_avg() (in module pyanp.priority)

 	geom_avg_mat() (in module pyanp.priority)

 	geom_avg_mats() (in module pyanp.pairwise)

 	get_item() (in module pyanp.anp)

 	get_key() (pyanp.rating.WordEval method)

 	get_matrix() (in module pyanp.general)

 	get_node() (pyanp.ahptree.AHPTree method)

 	
 	get_node_prioritizer() (pyanp.anp.ANPNode method)

 	get_nodes_hash() (pyanp.ahptree.AHPTree method)

 	get_unscaled_column() (pyanp.anp.ANPNode method)

 	global_priority() (pyanp.ahptree.AHPTree method)

 	(pyanp.anp.ANPNetwork method)

 	global_priority_df() (pyanp.anp.ANPNetwork method)

 	global_priority_table() (pyanp.ahptree.AHPTree method)

H

 	
 	harker_fix() (in module pyanp.priority)

 	has_subnet() (pyanp.anp.ANPNetwork method)

 	
 	hiearhcy_formula() (in module pyanp.limitmatrix)

 	hierarchy_nodes() (in module pyanp.limitmatrix)

I

 	
 	IDEALIZE (pyanp.prioritizer.PriorityType attribute)

 	import_pw_series() (pyanp.anp.ANPNetwork method)

 	import_rating_series() (pyanp.anp.ANPNetwork method)

 	incon_gci() (in module pyanp.priority)

 	incon_std() (in module pyanp.priority)

 	(pyanp.ahptree.AHPTree method)

 	(pyanp.pairwise.Pairwise method)

 	incon_std_series() (pyanp.ahptree.AHPTree method)

 	incond_std_table() (pyanp.ahptree.AHPTree method)

 	inconsistency_divisor() (in module pyanp.priority)

 	influence_fixed() (in module pyanp.rowsens)

 	influence_limit() (in module pyanp.rowsens)

 	influence_marginal() (in module pyanp.rowsens)

 	influence_perspective() (in module pyanp.rowsens)

 	influence_rank() (in module pyanp.rowsens)

 	
 	influence_table() (in module pyanp.rowsens)

 	influence_table_plot() (in module pyanp.rowsens)

 	invert_priority() (pyanp.anp.ANPNetwork method)

 	is_alt() (pyanp.anp.ANPNetwork method)

 	(pyanp.pairwise.Pairwise method)

 	(pyanp.rating.Rating method)

 	is_node() (pyanp.anp.ANPCluster method)

 	is_node_cluster_connection() (pyanp.anp.ANPNode method)

 	is_node_node_connection() (pyanp.anp.ANPNode method)

 	is_pw_col_name() (in module pyanp.anp)

 	is_rating_col_name() (in module pyanp.anp)

 	is_user() (pyanp.anp.ANPNetwork method)

 	(pyanp.pairwise.Pairwise method)

 	(pyanp.rating.Rating method)

 	isalt() (pyanp.ahptree.AHPTree method)

 	islist() (in module pyanp.general)

K

 	
 	keys_match_score() (pyanp.rating.WordEval method)

L

 	
 	limit_matrix() (pyanp.anp.ANPNetwork method)

 	limit_newhierarchy() (in module pyanp.limitmatrix)

 	
 	limit_sinks() (in module pyanp.limitmatrix)

 	linear_interpolate() (in module pyanp.general)

M

 	
 	mat_gci() (in module pyanp.priority)

 	matrix() (pyanp.pairwise.Pairwise method)

 	
 	matrix_as_df() (in module pyanp.general)

 	matrix_matching() (in module pyanp.exmats)

N

 	
 	nalts() (pyanp.ahptree.AHPTree method)

 	(pyanp.pairwise.Pairwise method)

 	(pyanp.prioritizer.Prioritizer method)

 	(pyanp.rating.Rating method)

 	nclusters() (pyanp.anp.ANPNetwork method)

 	nnodes() (pyanp.anp.ANPCluster method)

 	(pyanp.anp.ANPNetwork method)

 	node_connect() (pyanp.anp.ANPNetwork method)

 	(pyanp.anp.ANPNode method)

 	node_connection_matrix() (pyanp.anp.ANPNetwork method)

 	node_connections() (pyanp.anp.ANPNetwork method)

 	node_incon_std_df() (pyanp.anp.ANPNetwork method)

 	node_invert() (pyanp.anp.ANPNetwork method)

 	node_names() (pyanp.anp.ANPCluster method)

 	(pyanp.anp.ANPNetwork method)

 	
 	node_obj() (pyanp.anp.ANPCluster method)

 	(pyanp.anp.ANPNetwork method)

 	node_objs() (pyanp.anp.ANPCluster method)

 	(pyanp.anp.ANPNetwork method)

 	node_objs_with_subnet() (pyanp.anp.ANPNetwork method)

 	node_prioritizer() (pyanp.anp.ANPNetwork method)

 	node_pwmatrix() (pyanp.ahptree.AHPTree method)

 	nodenames() (pyanp.ahptree.AHPTree method)

 	nodepw() (pyanp.ahptree.AHPTree method)

 	nodes() (pyanp.ahptree.AHPTree method)

 	NORMALIZE (pyanp.prioritizer.PriorityType attribute)

 	normalize() (in module pyanp.limitmatrix)

 	normalize_cols_dist() (in module pyanp.limitmatrix)

 	nusers() (pyanp.anp.ANPNetwork method)

 	(pyanp.rating.Rating method)

P

 	
 	p0mode_is_direct() (in module pyanp.rowsens)

 	p0mode_is_smart() (in module pyanp.rowsens)

 	p0mode_name() (in module pyanp.rowsens)

 	Pairwise (class in pyanp.pairwise)

 	pairwisematrix_ex() (in module pyanp.exmats)

 	prerr_euclidratio() (in module pyanp.priority)

 	prerr_ratio_avg() (in module pyanp.priority)

 	prerr_ratio_prod() (in module pyanp.priority)

 	pri_eigen() (in module pyanp.priority)

 	pri_expeigen() (in module pyanp.priority)

 	pri_geomavg() (in module pyanp.priority)

 	pri_llsm() (in module pyanp.priority)

 	Prioritizer (class in pyanp.prioritizer)

 	priority() (in module pyanp.limitmatrix)

 	(pyanp.ahptree.AHPTree method)

 	(pyanp.anp.ANPNetwork method)

 	(pyanp.direct.Direct method)

 	(pyanp.pairwise.Pairwise method)

 	(pyanp.prioritizer.Prioritizer method)

 	(pyanp.rating.Rating method)

 	
 	priority_df() (pyanp.prioritizer.Prioritizer method)

 	priority_from_limit() (in module pyanp.limitmatrix)

 	priority_table() (pyanp.ahptree.AHPTree method)

 	PriorityType (class in pyanp.prioritizer)

 	pyanp.anp (module)

 	pyanp.exmats (module)

 	pyanp.general (module)

 	pyanp.limitmatrix (module)

 	pyanp.pairwise (module)

 	pyanp.priority (module)

 	pyanp.rating (module)

 	pyanp.rowsens (module)

R

 	
 	rank_change() (in module pyanp.rowsens)

 	Rating (class in pyanp.rating)

 	ratio_greater_1() (in module pyanp.priority)

 	ratio_mat() (in module pyanp.priority)

 	
 	RAW (pyanp.prioritizer.PriorityType attribute)

 	rescale() (in module pyanp.rowsens)

 	row_adjust() (in module pyanp.rowsens)

 	row_adjust_priority() (in module pyanp.rowsens)

S

 	
 	scaled_supermatrix() (pyanp.anp.ANPNetwork method)

 	set_alts_cluster() (pyanp.anp.ANPNetwork method)

 	set_node_prioritizer_type() (pyanp.anp.ANPNode method)

 	set_pairwise_from_supermatrix() (pyanp.anp.ANPNetwork method)

 	set_prioritizer_type() (pyanp.anp.ANPCluster method)

 	set_word_eval() (pyanp.rating.Rating method)

 	size_array_like() (in module pyanp.priority)

 	
 	structure_priority() (pyanp.anp.ANPNetwork method)

 	subnet() (pyanp.anp.ANPNetwork method)

 	subnet_synthesize() (pyanp.anp.ANPNetwork method)

 	sum_subnetwork_formula() (in module pyanp.anp)

 	supermatrix_ex() (in module pyanp.exmats)

 	synthesize() (pyanp.ahptree.AHPTree method)

 	synthesize_combine() (pyanp.anp.ANPNetwork method)

T

 	
 	two_two_breakdown() (in module pyanp.limitmatrix)

U

 	
 	unscaled_supermatrix() (pyanp.anp.ANPNetwork method)

 	unvote() (pyanp.pairwise.Pairwise method)

 	unwrap_list() (in module pyanp.general)

 	user_names() (pyanp.anp.ANPNetwork method)

 	(pyanp.prioritizer.Prioritizer method)

 	(pyanp.rating.Rating method)

 	
 	usernames() (pyanp.ahptree.AHPTree method)

 	(pyanp.direct.Direct method)

 	(pyanp.pairwise.Pairwise method)

 	utmrowlist_to_npmatrix() (in module pyanp.priority)

V

 	
 	vote() (pyanp.pairwise.Pairwise method)

 	vote_column() (pyanp.rating.Rating method)

 	
 	vote_matrix() (pyanp.pairwise.Pairwise method)

 	vote_series() (pyanp.pairwise.Pairwise method)

 	vote_values() (pyanp.rating.Rating method)

W

 	
 	WordEval (class in pyanp.rating)

 	
 	WordEvalType (class in pyanp.rating)

Z

 	
 	zero_cols() (in module pyanp.limitmatrix)

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Python ANP/AHP Library

 		
 Programmers Reference PyANP

 		
 AHPTree class

 		
 Group pairwise comparison

 		
 Priority calculations module

 		
 Limit matrix calculations

 		
 Example matrices module

 		
 General functions module

 		
 Direct data class

 		
 Prioritizer class

 		
 ANP Row Sensitivity

 		
 Rating class

 		
 ANP structure module

_static/ajax-loader.gif

